266 research outputs found

    Editorial: Adenylyl Cyclase Isoforms as Potential Drug Targets

    Get PDF
    Editorial on the Research Topic Adenylyl cyclase isoforms as potential drug target

    Adenylyl cyclases (ACs) (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Adenylyl cyclase, E.C. 4.6.1.1, converts ATP to cyclic AMP and pyrophosphate. Mammalian membrane-delimited adenylyl cyclases (nomenclature as approved by the NC-IUPHAR Subcommittee on Adenylyl cyclases [9]) are typically made up of two clusters of six TM domains separating two intracellular, overlapping catalytic domains that are the target for the nonselective activators Gαs (the stimulatory G protein α subunit) and forskolin (except AC9, [21]). adenosine and its derivatives (e.g. 2',5'-dideoxyadenosine), acting through the P-site,are inhibitors of adenylyl cyclase activity [27]. Four families of membranous adenylyl cyclase are distinguishable: calmodulin-stimulated (AC1, AC3 and AC8), Ca2+- and Gβγ-inhibitable (AC5, AC6 and AC9), Gβγ-stimulated and Ca2+-insensitive (AC2, AC4 and AC7), and forskolin-insensitive (AC9) forms. A soluble adenylyl cyclase (AC10) lacks membrane spanning regions and is insensitive to G proteins.It functions as a cytoplasmic bicarbonate (pH-insensitive) sensor [5]

    Adenylyl cyclases (ACs) in GtoPdb v.2023.1

    Get PDF
    Adenylyl cyclase, E.C. 4.6.1.1, converts ATP to cyclic AMP and pyrophosphate. Mammalian membrane-delimited adenylyl cyclases (nomenclature as approved by the NC-IUPHAR Subcommittee on Adenylyl cyclases [11]) are typically made up of two clusters of six TM domains separating two intracellular, overlapping catalytic domains that are the target for the nonselective activators Gαs (the stimulatory G protein α subunit) and forskolin (except AC9, [28]). adenosine and its derivatives (e.g. 2',5'-dideoxyadenosine), acting through the P-site,are inhibitors of adenylyl cyclase activity [35]. Four families of membranous adenylyl cyclase are distinguishable: calmodulin-stimulated (AC1, AC3 and AC8), Ca2+- and Gβγ-inhibitable (AC5, AC6 and AC9), Gβγ-stimulated and Ca2+-insensitive (AC2, AC4 and AC7), and forskolin-insensitive (AC9) forms. A soluble adenylyl cyclase (AC10) lacks membrane spanning regions and is insensitive to G proteins.It functions as a cytoplasmic bicarbonate (pH-insensitive) sensor [7]

    Adrenergic agonists induce heterologous sensitization of adenylate cyclase in NS20Y-D2L cells

    Get PDF
    AbstractAdenylate cyclase activity in NS20Y cells expressing D2L dopamine receptors was examined following chronic treatment with norepinephrine and epinephrine. Initial acute experiments revealed that both norepinephrine and epinephrine inhibited forskolin-stimulated cyclic AMP accumulation via D2 receptors. Furthermore, chronic (18 h) activation of D2 dopamine receptors by norepinephrine or epinephrine induced a marked increase (>10-fold) in subsequent forskolin-stimulated cyclic AMP accumulation. This heterologous sensitization of adenylate cyclase activity was blocked by D2 dopamine receptor antagonists and by pertussis toxin pretreatment. In contrast, concurrent activation of Gαs or adenylate cyclase did not appear to alter noradrenergic agonist-induced sensitization

    Dopamine D2 Receptor-Mediated Heterologous Sensitization of AC5 Requires Signalosome Assembly

    Get PDF
    Chronic dopamine receptor activation is implicated in several central nervous system disorders. Although acute activation of Gαi-coupled D2 dopamine receptors inhibits adenylyl cyclase, persistent activation enhances adenylyl cyclase activity, a phenomenon called heterologous sensitization. Previous work revealed a requirement for Gαs in D2-induced heterologous sensitization of AC5. To elucidate the mechanism of Gαs dependency, we expressed Gαs mutants in Gαs-deficient GnasE2−/E2− cells. Neither Gαs-palmitoylation nor Gαs-Gβγ interactions were required for sensitization of AC5. Moreover, we found that coexpressing βARKct-CD8 or Sar1(H79G) blocked heterologous sensitization. These studies are consistent with a role for Gαs-AC5 interactions in sensitization however, Gβγ appears to have an indirect role in heterologous sensitization of AC5, possibly by promoting proper signalosome assembly

    Physiological Roles of Mammalian Transmembrane Adenylyl Cyclase Isoforms

    Get PDF
    Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors. The transmembrane ACs display varying expression patterns across tissues, giving potential for them having a wide array of physiologic roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform\u27s role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions

    Evaluation of AaDOP2 Receptor Antagonists Reveals Antidepressants and Antipsychotics as Novel Lead Molecules for Control of the Yellow Fever Mosquito, Aedes aegypti s

    Get PDF
    ABSTRACT The yellow fever mosquito, Aedes aegypti, vectors disease-causing agents that adversely affect human health, most notably the viruses causing dengue and yellow fever. The efficacy of current mosquito control programs is challenged by the emergence of insecticideresistant mosquito populations, suggesting an urgent need for the development of chemical insecticides with new mechanisms of action. One recently identified potential insecticide target is the A. aegypti D 1 -like dopamine receptor, AaDOP2. The focus of the present study was to evaluate AaDOP2 antagonism both in vitro and in vivo using assay technologies with increased throughput. The in vitro assays revealed AaDOP2 antagonism by four distinct chemical scaffolds from tricyclic antidepressant or antipsychotic chemical classes, and elucidated several structure-activity relationship trends that contributed to enhanced antagonist potency, including lipophilicity, halide substitution on the tricyclic core, and conformational rigidity. Six compounds displayed previously unparalleled potency for in vitro AaDOP2 antagonism, and among these, asenapine, methiothepin, and cis-(Z)-flupenthixol displayed subnanomolar IC 50 values and caused rapid toxicity to A. aegypti larvae and/or adults in vivo. Our study revealed a significant correlation between in vitro potency for AaDOP2 antagonism and in vivo toxicity, suggesting viability of AaDOP2 as an insecticidal target. Taken together, this study expanded the repertoire of known AaDOP2 antagonists, enhanced our understanding of AaDOP2 pharmacology, provided further support for rational targeting of AaDOP2, and demonstrated the utility of efficiency-enhancing in vitro and in vivo assay technologies within our genome-to-lead pipeline for the discovery of next-generation insecticides

    Estimation of privacy risk through centrality metrics

    Full text link
    [EN] Users are not often aware of privacy risks and disclose information in online social networks. They do not consider the audience that will have access to it or the risk that the information continues to spread and may reach an unexpected audience. Moreover, not all users have the same perception of risk. To overcome these issues, we propose a Privacy Risk Score (PRS) that: (1) estimates the reachability of an user¿s sharing action based on the distance between the user and the potential audience; (2) is described in levels to adjust to the risk perception of individuals; (3) does not require the explicit interaction of individuals since it considers information flows; and (4) can be approximated by centrality metrics for scenarios where there is no access to data about information flows. In this case, if there is access to the network structure, the results show that global metrics such as closeness have a high degree of correlation with PRS. Otherwise, local and social centrality metrics based on ego-networks provide a suitable approximation to PRS. The results in real social networks confirm that local and social centrality metrics based on degree perform well in estimating the privacy risk of users.This work is partially supported by the Spanish Government project TIN2014-55206-R and FPI grant BES-2015-074498.Alemany-Bordera, J.; Del Val Noguera, E.; Alberola Oltra, JM.; García-Fornes, A. (2018). Estimation of privacy risk through centrality metrics. Future Generation Computer Systems. 82:63-76. https://doi.org/10.1016/j.future.2017.12.030S63768

    THE DEPENDENCE OF THE FATTENING ABILITY OF CHICKENS UPON SEX

    Get PDF
    <div><p>Background</p><p>New mode-of-action insecticides are sought to provide continued control of pesticide resistant arthropod vectors of neglected tropical diseases (NTDs). We previously identified antagonists of the AaDOP2 D1-like dopamine receptor (DAR) from the yellow fever mosquito, <i>Aedes aegypti</i>, with toxicity to <i>Ae</i>. <i>aegypti</i> larvae as leads for novel insecticides. To extend DAR-based insecticide discovery, we evaluated the molecular and pharmacological characteristics of an orthologous DAR target, <i>Cq</i>DOP2, from <i>Culex quinquefasciatus</i>, the vector of lymphatic filariasis and West Nile virus.</p><p>Methods/Results</p><p><i>Cq</i>DOP2 has 94.7% amino acid identity to <i>Aa</i>DOP2 and 28.3% identity to the human D1-like DAR, hD1. <i>Cq</i>DOP2 and <i>Aa</i>DOP2 exhibited similar pharmacological responses to biogenic amines and DAR antagonists in cell-based assays. The antagonists amitriptyline, amperozide, asenapine, chlorpromazine and doxepin were between 35 to 227-fold more selective at inhibiting the response of <i>Cq</i>DOP2 and <i>Aa</i>DOP2 in comparison to hD1. Antagonists were toxic to both <i>C</i>. <i>quinquefasciatus</i> and <i>Ae</i>. <i>aegypti</i> larvae, with LC50 values ranging from 41 to 208 μM 72 h post-exposure. Orthologous DOP2 receptors identified from the African malaria mosquito, <i>Anopheles gambiae</i>, the sand fly, <i>Phlebotomus papatasi</i> and the tsetse fly, <i>Glossina morsitans</i>, had high sequence similarity to <i>Cq</i>DOP2 and <i>Aa</i>DOP2.</p><p>Conclusions</p><p>DAR antagonists represent a putative new insecticide class with activity against <i>C</i>. <i>quinquefasciatus</i> and <i>Ae</i>. <i>aegypti</i>, the two most important mosquito vectors of NTDs. There has been limited change in the sequence and pharmacological properties of the DOP2 DARs of these species since divergence of the tribes Culicini and Aedini. We identified antagonists selective for mosquito versus human DARs and observed a correlation between DAR pharmacology and the <i>in vivo</i> larval toxicity of antagonists. These data demonstrate that sequence similarity can be predictive of target potential. On this basis, we propose expanded insecticide discovery around orthologous DOP2 targets from additional dipteran vectors.</p></div
    corecore